Exercise 1. Let I be an interval. Given continuous function f(x) defined on I, f(I) has a maximum and minimum. Then, I is compact.

Proof. Remind that f(x) = x is a continuous function. In addition, f(I) = I. Since f(I) is compact, f(I) = I is bounded. So, we have four possible cases I = (a, b), (a, b], [a, b), [a, b]. In any case, $\inf f(I) = a$ and $\sup f(I) = b$. Hence, $a, b \in I$. Namely, I = [a, b] is compact. \Box

Exercise 2. Let S be a set in \mathbb{R} . Given continuous function f(x) defined on S, f(S) is a compact interval. Then, S is compact.

Proof. Remind that f(x) = x is a continuous function. In addition, f(S) = S. Since f(S) is a compact interval, S is a compact interval.

Exercise 3. Let $S = [-1, -2] \cup [1, 2]$ and $f(x) = x^2$. Then, f(S) = [1, 4] is a compact interval. Namely, even if S is disconnected and f(x) is continuous, f(S) can be an interval.