Exercise 1. Let I be an interval. Given continuous function $f(x)$ defined on $I, f(I)$ has a maximum and minimum. Then, I is compact.

Proof. Remind that $f(x)=x$ is a continuous function. In addition, $f(I)=$ I. Since $f(I)$ is compact, $f(I)=I$ is bounded. So, we have four possible cases $I=(a, b),(a, b],[a, b),[a, b]$. In any case, $\inf f(I)=a$ and $\sup f(I)=b$. Hence, $a, b \in I$. Namely, $I=[a, b]$ is compact.

Exercise 2. Let S be a set in \mathbb{R}. Given continuous function $f(x)$ defined on $S, f(S)$ is a compact interval. Then, S is compact.

Proof. Remind that $f(x)=x$ is a continuous function. In addition, $f(S)=$ S. Since $f(S)$ is a compact interval, S is a compact interval.

Exercise 3. Let $S=[-1,-2] \cup[1,2]$ and $f(x)=x^{2}$. Then, $f(S)=[1,4]$ is a compact interval. Namely, even if S is disconnected and $f(x)$ is continuous, $f(S)$ can be an interval.

